Dependency Representations for Lexical Segmentation

Matthieu Constant ^{1,3} Joseph Le Roux ² Nadi Tomeh ²

¹Université Paris-Est, LIGM, CNRS, France

²Université Paris 13, LIPN, CNRS, France

³Alpage team, INRIA, France

October 20, 2015

This talk

Multiword Expression Identification

- Component of semantic segmentation (cf. SemEval 2016 Shared task)
- Processing running text (i.e. is not MWE discovery)
- Framework : supervised statistical lexicon-based dependency parsing
- Approaches: (a) MWE recognizer without syntactic context; (b) combined with syntactic parser

Contributions

- Exploring use of dependency representations for lexical segmentation
- Comparing with use of sequential representations
- Ongoing research : deep segmentation ; 2-dimensional MWE-aware parser

Lexical segmentation

Definition

- Process that maps a token sequence into a sequence of lexical units
- Lexical units : simple words, multiword expressions (MWE), subpart of tokens (French : *du* → *de le*)

Example

- Input : John made a big deal out of it
- Output : John made_a_big_deal out_of it

◆□▶ ◆課▶ ◆臣▶ ◆臣▶ = 臣 = の�@

Lexical segmentation

Definition

- Process that maps a token sequence into a sequence of lexical units
- Lexical units : simple words, multiword expressions (MWE), subpart of tokens (French : du → de le)

Example

- Input : John made a big deal out of it
- Output : John made_a_big_deal out_of it

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Motivations for Supervised statistical approach

- Learning of discriminative models from annotated data
- Can be combined with external lexicons to improve MWE coverage
- Help resolve grammatical ambiguity given a local context
- Allow to infer some generalizations : ex. in French, coup de N (strike of N)

MWE Sequential labelling

(Vincze et al. 2011, Constant et al. 2012, Schneider et al. 2014)

Annotating with an IOB-like tagset

Ι	have	a	bit	of	experience	watching	the	usual	assembly	line
0	В	b	i	0	1	0	0	0	В	1

(example taken from Schneider et al. 2014)

Strength and weakness

- Very accurate and efficient hack in practice
- Theoretically unsatisfactory : bounded embeddings, no interleaved MWEs, no hierachical annotation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Dependency representations

Our idea

- · Representing lexical segmentation with a dependency tree
- Each lexical unit is represented by a subtree, which root is the leftmost token of the lexical unit (not new)
- Similar approaches for word segmentation in Chinese (Zhao et al. 2009; Zhang et al. 2014)

Two types of dependencies

- internal dependencies corresponding to lexical unit subtrees
- external dependencies linking lexical units (subtrees) together

Representation of lexical units

(b) I decided to give him a try

Chained representation (Nivre and Nilsson 2004)

External dependencies

Non-chained representation

Chained representation

Experiment settings

datasets

Language	Englis	sh	French	Hungarian	
Corpus	CMWE	Wiki50	FTB	Szeged	
	(Schneider 14)	(Vincze 11)	(Seddah 13)	(Vincze 10)	
# tokens	55,577	114,335	564,798	1,318,501	
# MWEs	3,403	7,490	29,827	3,342	
ratio	0.06	0.06	0.05	0.003	

Other resources

- parser : TurboParser (Martins el al. 2013) but also Mate (Bohnet 10), MaltOptimizer (Ballesteros and Nivre 2013)
- predicted POS tags
- MWE lexicons (morphological features in conll format)

Some preliminary results

CMWE : an "almost" representative case

	Chained	Chained			
Annotation	external	internal	Rec.	Prec.	F-score
	-	-	44.9	65.4	53.3
dependency	-	+	45.1	64.4	53.1
dependency	+	-	43.9	60.1	50.7
	+	+	45.4	56.9	50.5
sequential	N/A		48.3	61.0	53.9
(Schneider et al. 2014)					

・ロト・日本・モート ヨー うへつ

Some preliminary results

CMWE : an "almost" representative case

	Chained	Chained			
Annotation	external	internal	Rec.	Prec.	F-score
	-	-	44.9	65.4	53.3
dopondopov	-	+	45.1	64.4	53.1
dependency	+	-	43.9	60.1	50.7
	+	+	45.4	56.9	50.5
sequential	N/A		48.3	61.0	53.9
(Schneider et al. 2014)					

=> Best dep representation : non-chained representation for external dependencies (grand parent feats)

Other datasets

- Wiki50 and Hungarian : dependency > sequential
- FTB : sequential > dependency

Toward a deeper segmentation

Phenomena

- Embedding : John (made a (big deal)) of it
- Crossing : Luc prend un cachet et demi (Luc takes one and a half pill)
- Partial overlapping : pay close attention (Laurent's example)
- Factorization : John and Mary Smith (general phenomena)

Dependency representations

Toward a deeper segmentation

Phenomena

- Embedding : John (made a (big deal)) of it
- Crossing : Luc prend un cachet et demi (Luc takes one and a half pill)
- Partial overlapping : pay close attention (Laurent's example)
- Factorization : John and Mary Smith (general phenomena)

Dependency representations

Toward a two-dimensional MWE-parser [under submission]

Related work

- MWE identification combined with syntactic dependency parsing
- Why? both tasks can help each other
- Joint approach : a unique parsing model is learned on syntactic treebanks where MWE are integrated as subtrees (Nivre et Nilson 2004, Erygit 2011, Candito et Constant 2014, Nasr et al. 15)
- MWE subtrees can be flat (Seddah et al 2013) or deeper (Vincze et al. 2013)

Starting point : joint MWE and syntactic representation

Example inspired by representations in (Vincze et al. 2013, Candito and Constant 2014)

(日本)(周本)(日本)(日本)(日本)

Toward a two-dimensional MWE-aware parser

Principle

- Joint system : dependency labels concatenate syntactic function and MWE marker
- Why predicting both information exactly at the same time as it increases complexity ?
- Idea : duplicate concatenated labels → two dimensions (1) syntax, (2) semantic segmentation (e.g. MWE)
- Complex phenomena (embeddings, crossings) can hardly be represented
- Proposal : one dimension = one tree ; simultaneously predict both trees

Two-dimensional dependency representation

Links between the two dimensions

- Shared leaves (i.e. words)
- MWE subtree root = MWE syntactic head
- Shared annotation of MWE with irregular syntactic structure
- Extraction of bidimensional features

First results

Experiments

- Implementation in the Easyfirst paradigm (Goldberg and Elhadad 2010)
- Data with shallow MWE annotation : English (Web Treebank), French (FTB)
- Currently, small gains with respect to standard parser... but we're working on it !

Discussions

- Advantage : possibility to use a deeper semantic dimension
- $\rightarrow\,$ first tests on Sequoia treebank, deeply reannotated in MWE (very small data)
 - **Cons :** Non-factorized representation ; tree is not sufficient (ex. partial overlapping)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Dependency representation for shallow and deep MWE annotation
- Ongoing integration in a two-dimensional dependency parser